The Integral Test
Let \(f\left( x \right)\) be a function which is continuous, positive, and decreasing for all \(x\) in the range \(\left[ {1, + \infty } \right).\) Then the series
converges if the improper integral \(\int\limits_1^\infty {f\left( x \right)dx}\) converges, and diverges if \(\int\limits_1^\infty {f\left( x \right)dx} \to \infty.\)
Solved Problems
Click or tap a problem to see the solution.
Example 1
Determine whether the series \[\sum\limits_{n = 1}^\infty {\frac{1}{{1 + 10n}}}\] converges or diverges.
Example 2
Show that the \(p\)-series \[\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \] converges for \(p \gt 1.\)
Example 1.
Determine whether the series \[\sum\limits_{n = 1}^\infty {\frac{1}{{1 + 10n}}}\] converges or diverges.
Solution.
We use the integral test. Calculate the improper integral
Thus, the given series is divergent.
Example 2.
Show that the \(p\)-series \[\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \] converges for \(p \gt 1.\)
Solution.
We consider the corresponding function \(f\left( x \right) = \frac{1}{{{x^p}}}\) and apply the integral test. The improper integral is
Hence, the \(p\)-series converges for \(p \gt 1.\)