Complex Form of Fourier Series

Trigonometry

Trigonometry Logo

Complex Form of Fourier Series

Let the function f(x) be defined on the interval [π,π]. Using the well-known Euler's formulas

cosφ=eiφ+eiφ2,sinφ=eiφeiφ2i,

we can write the Fourier series of the function in complex form:

f(x)=a02+n=1(ancosnx+bnsinnx)=a02+n=1(aneinx+einx2+bneinxeinx2i)=a02+n=1anibn2einx+n=1an+ibn2einx=n=cneinx.

Here we have used the following notations:

c0=a02,cn=anibn2,cn=an+ibn2.

The coefficients cn are called complex Fourier coefficients. They are defined by the formulas

cn=12πππf(x)einxdx,n=0,±1,±2,

If necessary to expand a function f(x) of period 2L, we can use the following expressions:

f(x)=n=cneinπxL,

where

cn=12LLLf(x)einπxLdx,n=0,±1,±2,

The complex form of Fourier series is algebraically simpler and more symmetric. Therefore, it is often used in physics and other sciences.

Solved Problems

Click or tap a problem to see the solution.

Example 1

Using complex form, find the Fourier series of the function

f(x)=signx={1,πx01,0<xπ.

Example 1.

Using complex form, find the Fourier series of the function

f(x)=signx={1,πx01,0<xπ.

Solution.

We calculate the coefficients c0 and cn for n0:

c0=12πππf(x)dx=12π[π0(1)dx+0πdx]=12π[(x)|π0+x|0π]=12π(π+π)=0,
cn=12πππf(x)einxdx=12π[π0(1)einxdx+0πeinxdx]=12π[(einx)|π0in+(einx)|0πin]=i2πn[(1einπ)+einπ1]=i2πn[einπ+einπ2]=iπn[einπ+einπ21]=iπn[cosnπ1]=iπn[(1)n1].

If n=2k, then c2k=0. If n=2k1, then c2k1=2i(2k1)π.

Hence, the Fourier series of the function in complex form is

f(x)=signx=2iπk=12k1ei(2k1)x.

We can transform the series and write it in the real form. Rename: n=2k1, n=±1,±2,±3, Then

f(x)=signx=2iπk=12k1ei(2k1)x=2iπn=einxn=2iπn=1(einxn+einxn)=4πn=1einxeinx2in=4πn=1sinnxn=4πk=1sin(2k1)x2k1.

Graph of the function and its Fourier approximation for n=5 and n=50 are shown in Figure 1.

Figure 1, n = 5, n = 50