Double Integrals in Polar Coordinates

Trigonometry

Trigonometry Logo

Double Integrals in Polar Coordinates

One of the particular cases of change of variables is the transformation from Cartesian to polar coordinate system \(\left({\text{Figure }1}\right):\)

\[x = r\cos \theta ,\;\;y = r\sin \theta .\]
Figure 1.

The Jacobian determinant for this transformation is

\[ \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {r,\theta } \right)}} = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial r}}}&{\frac{{\partial x}}{{\partial \theta }}}\\ {\frac{{\partial y}}{{\partial r}}}&{\frac{{\partial y}}{{\partial \theta }}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {\frac{{\partial \left( {r\cos \theta } \right)}}{{\partial r}}}&{\frac{{\partial \left( {r\cos \theta } \right)}}{{\partial \theta }}}\\ {\frac{{\partial \left( {r\sin \theta } \right)}}{{\partial r}}}&{\frac{{\partial \left( {r\sin \theta } \right)}}{{\partial \theta }}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {\cos \theta }&{ - r\sin \theta }\\ {\sin\theta }&{r\cos \theta } \end{array}} \right| = \cos \theta \cdot r\cos \theta - \left( { - r\sin \theta } \right) \cdot \sin \theta = r\,{\cos ^2}\theta + r\,{\sin ^2}\theta = r\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = r.\]

As a result, the differential for polar coordinates is

\[dxdy = \left| {\frac{{\partial \left( {x,y} \right)}}{{\partial \left( {r,\theta } \right)}}} \right|drd\theta = rdrd\theta .\]

Let the region \(R\) in polar coordinates be defined as follows (Figure \(2\)):

\[0 \le g\left( \theta \right) \le r \le h\left( \theta \right),\;\; \alpha \le \theta \le \beta ,\;\; \text{where}\;\;\beta - \alpha \le 2\pi .\]
Figure 2.
Figure 3.

Then the double integral in polar coordinates is given by the formula

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{g\left( \theta \right)}^{h\left( \theta \right)} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } } \]

The region of integration (Figure \(3\)) is called the polar rectangle if it satisfies the following conditions:

\[0 \le a \le r \le b,\;\; \alpha \le \theta \le \beta ,\;\; \text{where}\;\;\beta - \alpha \le 2\pi .\]

In this case the formula for change of variables can be written as

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{a}^{b} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } } .\]

Be careful not to forget the factor \(r\) (the Jacobian) in the right-hand side of the formula!

Solved Problems

Click or tap a problem to see the solution.

Example 1

Calculate the double integral \[\iint\limits_R {\left( {{x^2} + {y^2}} \right)dydx}\] by transforming to polar coordinates. The region of integration \(R\) is the sector \(0 \le \theta \le {\frac{\pi }{2}}\) of a circle with radius \(r = \sqrt 3.\)

Example 2

Evaluate the integral \[\iint\limits_R {xydydx},\] where the region of integration \(R\) lies in the sector \(0 \le \theta \le \frac{\pi}{2}\) between the curves \({x^2} + {y^2} = 1\) and \({x^2} + {y^2} = 5.\)

Example 1.

Calculate the double integral \[\iint\limits_R {\left( {{x^2} + {y^2}} \right)dydx}\] by transforming to polar coordinates. The region of integration \(R\) is the sector \(0 \le \theta \le {\frac{\pi }{2}}\) of a circle with radius \(r = \sqrt 3.\)

Solution.

The region \(R\) is the polar rectangle \(\left({\text{Figure }4}\right)\) and described by the set

\[R = \Big\{ {\left( {r,\theta } \right)|\;0 \le r \le \sqrt 3 ,\; 0 \le \theta \le {\frac{\pi }{2}}} \Big\} .\]
Figure 4.

Using the formula

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{a}^{b} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } },\]

we obtain

\[\iint\limits_R {\left( {{x^2} + {y^2}} \right)dydx} = \int\limits_0^{\frac{\pi }{2}} {\int\limits_0^{\sqrt 3 } {{r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)rdrd\theta } } = \int\limits_0^{\frac{\pi }{2}} {d\theta } \int\limits_0^{\sqrt 3 } {{r^3}dr} = \left. \theta \right|_0^{\frac{\pi }{2}} \cdot \left. {\left( {\frac{{{r^4}}}{4}} \right)} \right|_0^{\sqrt 3 } = \frac{\pi }{2} \cdot \frac{9}{4} = \frac{{9\pi }}{8}.\]

Example 2.

Evaluate the integral \[\iint\limits_R {xydydx},\] where the region of integration \(R\) lies in the sector \(0 \le \theta \le \frac{\pi}{2}\) between the curves \({x^2} + {y^2} = 1\) and \({x^2} + {y^2} = 5.\)

Solution.

In polar coordinates, the region of integration \(R\) is the polar rectangle \(\left({\text{Figure }5}\right):\)

\[R = \left\{ {\left( {r,\theta } \right)|\;1 \le r \le \sqrt 5 ,\; 0 \le \theta \le \frac{\pi}{2} } \right\}.\]
Figure 5.

So using the formula

\[\iint\limits_R {f\left( {x,y} \right)dxdy} = \int\limits_\alpha ^\beta {\int\limits_{a}^{b} {f\left( {r\cos \theta ,r\sin \theta } \right)rdrd\theta } },\]

we find the integral:

\[\iint\limits_R {xydydx} = \int\limits_0^{\frac{\pi}{2}} {\int\limits_1^{\sqrt 5 } {r\cos \theta r\sin \theta rdrd\theta } } = \int\limits_0^{\frac{\pi}{2}} {\sin \theta \cos \theta d\theta } \int\limits_1^{\sqrt 5 } {{r^3}dr} = \frac{1}{2}\int\limits_0^{\frac{\pi}{2}} {\sin 2\theta d\theta } \int\limits_1^{\sqrt 5 } {{r^3}dr} = \frac{1}{2}\left. {\left( { - \frac{{\cos 2\theta }}{2}} \right)} \right|_0^{\frac{\pi}{2}} \cdot \left. {\left( {\frac{{{r^4}}}{4}} \right)} \right|_1^{\sqrt 5 } = \frac{1}{4}\left( { - \cos \pi + \cos 0} \right) \cdot \frac{1}{4}\left( {25 - 1} \right) = \frac{1}{4}\left( { 1 + 1} \right) \cdot 6 = 3.\]