The Ratio and Root Tests
The Ratio Test
Let \(\sum\limits_{n = 1}^\infty {{a_n}}\) be a series with positive terms. Then the following rules are valid:
- If \(\lim\limits_{n \to \infty } {\frac{{{a_{n + 1}}}}{{{a_n}}}} \lt 1,\) then the series \(\sum\limits_{n = 1}^\infty {{a_n}}\) is convergent;
- If \(\lim\limits_{n \to \infty } {\frac{{{a_{n + 1}}}}{{{a_n}}}} \gt 1,\) then the series \(\sum\limits_{n = 1}^\infty {{a_n}}\) is divergent;
- If \(\lim\limits_{n \to \infty } {\frac{{{a_{n + 1}}}}{{{a_n}}}} = 1,\) then the series \(\sum\limits_{n = 1}^\infty {{a_n}}\) may converge or diverge and the ratio test is inconclusive; some other tests must be used.
The Root Test
Consider again the series \(\sum\limits_{n = 1}^\infty {{a_n}}\) with positive terms. According to the Root Test:
- If \(\lim\limits_{n \to \infty } \sqrt[n]{{{a_n}}} \lt 1,\) then the series \(\sum\limits_{n = 1}^\infty {{a_n}}\) is convergent;
- If \(\lim\limits_{n \to \infty } \sqrt[n]{{{a_n}}} \gt 1,\) then the series \(\sum\limits_{n = 1}^\infty {{a_n}}\) is divergent;
- If \(\lim\limits_{n \to \infty } \sqrt[n]{{{a_n}}} = 1,\) then the series \(\sum\limits_{n = 1}^\infty {{a_n}},\) may converge or diverge, but no conclusion can be drawn from this test.
Solved Problems
Click or tap a problem to see the solution.
Example 1
Determine whether the series \[\sum\limits_{n = 1}^\infty {\frac{{{3^n}}}{{{n^2}}}}\] converges or diverges.
Example 2
Investigate whether the series \[\sum\limits_{n = 1}^\infty {\frac{{{n^3}}}{{{{\left( {\ln 3} \right)}^n}}}}\] converges or diverges.
Example 1.
Determine whether the series \[\sum\limits_{n = 1}^\infty {\frac{{{3^n}}}{{{n^2}}}}\] converges or diverges.
Solution.
We use the ratio test.
As it can be seen, the given series diverges.
Example 2.
Investigate whether the series \[\sum\limits_{n = 1}^\infty {\frac{{{n^3}}}{{{{\left( {\ln 3} \right)}^n}}}}\] converges or diverges.
Solution.
We apply the ratio test to investigate convergence of this series:
As \(\ln 3 \gt \ln e = 1\) and \({\frac{1}{{\ln 3}}} \lt 1,\) the given series converges.