Use of Infinitesimals
The function \(\alpha \left( x \right)\) is called infinitely small or an infinitesimal as \(x \to a\) if
Let \(\alpha \left( x \right)\) and \(\beta \left( x \right)\) be two infinitely small functions as \(x \to a.\)
- If \(\lim\limits_{x \to a} {\frac{{\alpha \left( x \right)}}{{\beta \left( x \right)}}} = 0,\) then we say that the function \(\alpha \left( x \right)\) is an infinitesimal of higher order than \(\beta \left( x \right);\)
- If \(\lim\limits_{x \to a} {\frac{{\alpha \left( x \right)}}{{\beta \left( x \right)}}} = A \ne 0,\) then the functions \(\alpha \left( x \right)\) and \(\beta \left( x \right)\) are called infinitesimals of the same order;
- If \(\lim\limits_{x \to a} {\frac{{\alpha \left( x \right)}}{{{\beta ^n}\left( x \right)}}} = A \ne 0,\) then the function \(\alpha \left( x \right)\) is called an infinitesimal of order \(n\) compared with the function \(\beta \left( x \right);\)
- If \(\lim\limits_{x \to a} {\frac{{\alpha \left( x \right)}}{{\beta \left( x \right)}}} = 1,\) then the functions \(\alpha \left( x \right)\) and \(\beta \left( x \right)\) are said to be equivalent as \(x \to a.\)
In particular, the following functions are equivalent:
When calculating the limit of a ratio of two infinitesimals, we can replace the terms of the ratio by their equivalent values.
Solved Problems
Click or tap a problem to see the solution.
Example 1
Find the limit \[\lim\limits_{x \to 0} {\frac{{\ln \left( {1 + 4x} \right)}}{{\sin 3x}}}.\]
Example 2
Find the limit \[\lim\limits_{x \to 0} {\frac{{\sqrt[3]{{1 + x}} - 1}}{x}}.\]
Example 3
Find the limit \[\lim\limits_{t \to 0} {\frac{{1 - \cos \left( {1 - \cos t} \right)}}{{{{\sin }^2}{t^2}}}}.\]
Example 4
Calculate the limit \[\lim\limits_{x \to 0} {\frac{{\sqrt {1 + 2x + 3{x^2}} - 1}}{x}}.\]
Example 1.
Find the limit \[\lim\limits_{x \to 0} {\frac{{\ln \left( {1 + 4x} \right)}}{{\sin 3x}}}.\]
Solution.
We use the formulas:
Then
Example 2.
Find the limit \[\lim\limits_{x \to 0} {\frac{{\sqrt[3]{{1 + x}} - 1}}{x}}.\]
Solution.
As \(\sqrt[3]{{1 + x}} \sim 1 + {\frac{x}{3}},\) the limit can be written as
Example 3.
Find the limit \[\lim\limits_{t \to 0} {\frac{{1 - \cos \left( {1 - \cos t} \right)}}{{{{\sin }^2}{t^2}}}}.\]
Solution.
We know that \(\cos t \sim 1 - {\frac{{{t^2}}}{2}}\) and \(\sin t \sim t\) as \(t \to 0.\) Hence,
Example 4.
Calculate the limit \[\lim\limits_{x \to 0} {\frac{{\sqrt {1 + 2x + 3{x^2}} - 1}}{x}}.\]
Solution.
Replacing the square root with the equivalent infinitely small function, we have