Suppose we have a solid occupying a region \(U.\) Its volume density at a point \(M\left( {x,y,z} \right)\) is given by the function \(\rho\left( {x,y,z} \right).\) Then the mass of the solid \(m\) is expressed through the triple integral as
If a solid is homogeneous with density \({\rho \left( {x,y,z} \right)} = 1\) for all points \({M\left( {x,y,z} \right)}\) in the region \(U,\) then the center of gravity of the solid is determined only by the shape of the solid and is called the centroid.
Moments of Inertia of a Solid
The moments of inertia of a solid about the coordinate planes \(Oxy, Oxz, Oyz\) are given by
The moment of inertia about the origin can be expressed through the moments of inertia about the coordinate planes as follows:
\[{I_0} = {I_{xy}} + {I_{yz}} + {I_{xz}}.\]
Tensor of Inertia
Using the \(6\) numbers considered above: \({I_x},{I_y},{I_z},{I_{xy}},{I_{xz}},{I_{yz}},\) we can construct the so-called matrix of inertia or the tensor of inertia of the solid:
This tensor is symmetric and, hence, it can be transformed to a diagonal view by choosing the appropriate coordinate axes \(Ox', Oy', Oz'.\) The values of the diagonal elements (after transforming the tensor to a diagonal form) are called the main moments of inertia, and the indicated directions of the axes are called the eigenvalues or the principal axes of inertia of the body.
If a body rotates about an axis which does not coincide with a principal axis of inertia, it will experience vibrations at the high rotation speeds. Therefore, when designing such devices it is necessary the axis of rotation to be coinciding with one of the principal axes of inertia. For example, when replacing car tires, it's often necessary to balance the wheels by attaching small lead weights to ensure the coincidence of the rotation axis with the principal axis of inertia and to eliminate vibration.
Gravitational Potential and Attraction Force
The Newton potential of a body at a point \(P\left( {x,y,z} \right)\) is called the integral
The integration is performed over the whole volume of the body. Knowing the potential, one can calculate the force of attraction of the material point of mass \(m\) and the distributed body with the density \({\rho \left( {\xi ,\eta ,\zeta } \right)}\) by the formula
\[\mathbf{F} = - Gm\,\mathbf{\text{grad}}\,u,\]
where \(G\) is the gravitational constant.
Solved Problems
Click or tap a problem to see the solution.
Example 1
Find the centroid of a homogeneous half-ball of radius \(R.\)
Example 2
Determine the mass and coordinates of the center of gravity of the unit cube with the density
\[\rho \left( {x,y,z} \right) = x + 2y + 3z\]
(Figure \(2\)).
Example 1.
Find the centroid of a homogeneous half-ball of radius \(R.\)
Solution.
We introduce the system of coordinates in such a way that the half-ball is located at \(z \ge 0\) and centered at the origin (Figure \(1\text{).}\)
Using this system of coordinates, we find the centroid (the center of gravity) of the solid. Obviously, by symmetry,
\[\bar x = \bar y = 0.\]
Calculate the coordinate \(\bar z\) of the centroid by the formula
It remains to compute the triple integral \({\iiint\limits_U {zdxdydz} }.\) For this, we pass to spherical coordinates. In this case, the radial coordinate is denoted by \(r\) in order not to be confused with the density \(\rho.\) As a result, we have